Что такое таблица истинности в информатике определение

Что такое таблица истинности в информатике определение

Определение. Таблица истинности – это таблица, показывающая истинность сложного высказывания при всех возможных значениях входящих переменных.

Разберем подробнее каждую логическую операцию в соответствии с ее определением:

1. Инверсия (отрицание) – это логическая операция, которая каждому простому высказыванию ставит в соответствие составное высказывание, заключающееся в том, что исходное высказывание отрицается.

Таблица истинности схемы НЕ

2. Конъюнкция (умножение)– это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны.

Продолжительность урока: 45 мин

Тип урока: комбинированный:

  • проверка знаний – устная работа;
  • новый материал – лекция;
  • закрепление – практические упражнения;
  • проверка знаний – задания для самостоятельной работы.

Цели урока:

  • дать понятие таблицы истинности;
  • закрепление материала предыдущего урока “Алгебра высказываний”;
  • использование информационных технологий;
  • привитие навыка самостоятельного поиска нового материала;
  • развитие любознательности, инициативы;
  • воспитание информационной культуры.

План урока:

  1. Организационный момент (2 мин).
  2. Повторение материала предыдущего урока (устный опрос) (4 мин).
  3. Объяснение нового материала (12 мин).
  4. Закрепление
    • разбор примера (5 мин);
    • практические упражнения (10 мин);
    • задания для самостоятельной работы (10 мин).
    • Обобщение урока, домашнее задание (2 мин).

    Оборудование и программный материал:

    • белая доска;
    • мультимедийный проектор;
    • компьютеры;
    • редактор презентаций MS PowerPoint 2003;
    • раздаточный справочный материал “Таблицы истинности”;
    • демонстрация презентации “Таблицы истинности”.

    Ход урока

    I. Организационный момент

    Мы продолжаем изучение темы “Основы логики”. На предыдущих уроках мы увидели, что логика достаточно крепко связана с нашей повседневной жизнью, а также увидели, что почти любое высказывание можно записать в виде формулы.

    II. Повторение материала предыдущего урока

    Давайте вспомним основные определения и понятия:

    Вопрос Ответ
    1. Какое предложение является высказыванием? Повествовательное предложение, в котором что-либо утверждается или отрицается
    2. На какие виды делятся высказывания по своей структуре? Простые и сложные
    3. Истинность каких высказываний является договорной? Простых
    4. Истинность каких высказываний вычисляется? Сложных
    5. Как обозначаются простые высказывания в алгебре высказываний? Логическими переменными
    6. Как обозначается истинность таких высказываний? 1 и 0
    7. Что связывает переменные в формулах алгебры высказываний? Логические операции
    8. Перечислите их. Инверсия (отрицание)

    Эквиваленция (равносильность)

    9. Определите, соответствует ли формула сложному высказыванию. Назовите простые высказывания. Определите причину несоответствия. (Задание на экране) Нет, неправильно поставлен знак 10. Определите, соответствует ли формула сложному высказыванию. Назовите простые высказывания. Определите причину несоответствия. (Задание на экране) Да

    III. Объяснение нового материала

    Последние два примера относятся к сложным высказываниям. Как же определить истинность сложных высказываний?

    Мы говорили, что она вычисляется. Для этого в логике существуют таблицы для вычисления истинности составных (сложных) высказываний. Они называются таблицами истинности.

    Итак, тема урока ТАБЛИЦЫ ИСТИННОСТИ.

    (Далее вся работа происходит за компьютерами: учащиеся садятся за компьютеры и запускают демонстрацию урока “Таблицы истинности” (Приложение 1.pps))

    3.1) Определение. Таблица истинности – это таблица, показывающая истинность сложного высказывания при всех возможных значениях входящих переменных (Рисунок 1).

    3.2) Разберем подробнее каждую логическую операцию в соответствии с ее определением:

    1. Инверсия (отрицание) – это логическая операция, которая каждому простому высказыванию ставит в соответствие составное высказывание, заключающееся в том, что исходное высказывание отрицается.

    Эта операция относится только к одной переменной, поэтому для нее отведено только две строки, т.к. одна переменная может иметь одно из двух значений: 0 или 1.

    2. Конъюнкция (умножение)– это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны.

    Легко увидеть, что данная таблица действительно похожа на таблицу умножения.

    Читайте также:  Как посадить семена клещевины

    3. Дизъюнкция (сложение) – это логическая операция, которая каждым двум простым высказываниям ставит в соответствие составное высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны.

    Можно убедиться, что таблица похожа на таблицу сложения кроме последнего действия. В двоичной системе счисления 1 + 1 = 10, в десятичной – 1 + 1 = 2. В логике значения переменной 2 невозможно, рассмотрим 10 с точки зрения логики: 1 – истинно, 0 – ложно, т.о. 10 – истинно и ложно одновременно, чего быть не может, поэтому последнее действие строго опирается на определение.

    4. Импликация (следование) – это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся ложным тогда и только тогда, когда условие истинное, а следствие ложно.

    5. Эквиваленция (равносильность) – это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания одновременно истинны или ложны.

    Последние две операции были разобраны нами на предыдущем уроке.

    3.3) Разберем алгоритм составления таблицы истинности для сложного высказывания:

    • Определить, сколько переменных входит в формулу.
    • Определить количество комбинаций всевозможных значений переменных по формуле .
    • Определить приоритет действий.
    • Составить таблицу истинности.

    3.4) Рассмотрим пример составления таблицы истинности для сложного высказывания:

    Пример. Построить таблицу истинности для формулы: А U В —> ¬А U С.

    Решение (Рисунок 2)

    Из примера видно, что таблицей истинности является не все решение, а только последнее действие (столбец, выделенный красным цветом).

    IV. Закрепление.

    Для закрепления материала вам предлагается решить самостоятельно примеры под буквами а, б, в, дополнительно г–ж (Рисунок 3).

    V. Домашнее задание, обобщение материала.

    Домашнее задание дано вам также на экране монитора (Рисунок 4)

    Обобщение материала: сегодня на уроке мы научились определять истинность составных высказываний, но больше с математической точки зрения, так как вам были даны не сами высказывания, а формулы, отображающие их. На следующих уроках мы закрепим эти умения и постараемся их применить к решению логических задач.

    В данной статье мы начнем обозревать булевую алгебру или алгебру логики. Рассмотрим элементы функции на схеме, а так же приведем таблицы истинности для всех логических функций.

    Введение в булевую алгебру

    В 1854 году Джордж Буль провел исследование «законов мышления», которые основывались на упрощенной версии теории «групп» или «множеств», и из этого была выведена булевая алгебра.

    Булева алгебра имеет дело, главным образом, с теорией, согласно которой логические операции и операции над множествами являются либо «ИСТИННЫМИ», либо «ЛОЖНЫМИ», но не обеими одновременно.

    Например, A + A = A, а не 2A, как это было бы в обычной алгебре. Булева алгебра — это простой и эффективный способ представления действия переключения стандартных логических вентилей, а основные логические операторы, которые нас здесь интересуют, задаются операциями логических вентилей функций И , ИЛИ и НЕ.

    Логическая функция «И» (умножение)

    Функция логики И утверждает, что два или более события должны происходить вместе и одновременно, чтобы происходило выходное действие. Порядок, в котором происходят эти действия, не имеет значения, поскольку он не влияет на конечный результат. Например, & B = B & . В булевой алгебре функция логики И подчиняется коммутативному закону, который допускает изменение положения любой переменной.

    Функция «И» представлена в электронике символом точки или полной остановки ( . ) Таким образом, 2-входное ( АВ ) «И» элемент имеет выходной термин, представленный логическим выражением A.B или просто AB.

    Представление функции «И» на схеме

    Здесь два переключателя A и B соединены вместе, образуя последовательную цепь. Поэтому в вышеупомянутой цепи оба выключателя A «И» B должны быть замкнуты (логика «1»), чтобы включить лампу. Другими словами, оба переключателя должны быть замкнуты или должны иметь логическую «1», чтобы лампа горела.

    Читайте также:  Солнечный фильтр своими руками

    Тогда логический элемент этого типа (логический элемент «И» ) создает выход только тогда, когда все его входы истины. В терминах булевой алгебры вывод будет ИСТИНА, только когда все его входы ИСТИНА. В электрическом смысле логическая функция «И» равна последовательной цепи, как показано выше.

    Поскольку имеется только два переключателя, каждый с двумя возможными состояниями «открытый» или «закрытый». Определяя логическую «0» как то, когда переключатель разомкнут, и логическую «1», когда переключатель замкнут, существует четыре различных способа или комбинации расположения двух переключателей вместе, как показано в таблице ниже.

    Таблица истинности для функции «И»

    Логические «И» элементы доступны как стандартные пакеты ic, такие как общие TTL 74LS08 Четырехпозиционные 2-входные положительные элементы «И» (или эквивалент CMOS 4081), TTL 74LS11 Тройные 3-входные положительные элементы «И» или 74LS21 Двойные 4-входные положительные элементы «И». «И» ворота можно также «каскадировать» вместе для создания цепей с более чем 4 входами.

    Логическая функция «ИЛИ» (сложение)

    Функция логического «ИЛИ» заявляет, что выходное действие станет ИСТИНОЙ, если одно «ИЛИ» больше событий ИСТИНЫ, но порядок, в котором они происходят, не имеет значения, поскольку он не влияет на конечный результат.

    Так , например, А + В = В + А . В булевой алгебре функция логического «ИЛИ» подчиняется коммутативному закону так же, как и для логической функции «И», что позволяет изменять положение любой переменной.

    Логика или логическое выражение, данное для логического элемента «ИЛИ», является логическим выражением, которое обозначается знаком плюс, ( + ). Таким образом, 2-входной ( АВ ) Логический элемент «ИЛИ» имеет выход термин, представленный булевой выражением: A + B = Q .

    Представление функции «ИЛИ» на схеме

    Здесь два переключателя А и B соединены параллельно и, либо переключатель A «ИЛИ» переключатель B может быть закрыт, чтобы включить лампу. Другими словами, выключатель может быть замкнут, либо быть на логике «1», чтобы лампа была включена.

    Тогда этот тип логического элемента генерирует и выводит только тогда, когда присутствует «ЛЮБОЙ» из его входов, и в терминах Булевой алгебры выход будет ИСТИНА, если любой из его входов ИСТИНЕН. В электрическом смысле логическая функция «ИЛИ» равна параллельной цепи.

    Как и в случае с функцией «И», есть два переключателя, каждый с двумя возможными положениями, открытыми или закрытыми, поэтому будет 4 различных способа расположения переключателей.

    Таблица истинности для функции «ИЛИ»

    Логические «ИЛИ» элементы доступны в виде стандартных пакетов ic, таких как общие TTL 74LS32 Четырехместные 2-входные положительные «ИЛИ» элементы. Как и в предыдущем логическом элементе «И», «ИЛИ» также может быть «каскадно» соединен для создания цепей с большим количеством входов, таких как системы охранной сигнализации (зона A или зона B или зона C и т.д.).

    Логическая функция «НЕ» (отрицание)

    Функция «Логическое НЕ» — это просто инвертор с одним входом, который изменяет вход логического уровня «1» на выход логического уровня «0» и наоборот.

    «Функция логического НЕ» называется так, потому что ее выходное состояние НЕсовпадает с его входным состоянием с ее логическим выражением, обычно обозначаемым чертой или линией ( ¯ ) над его входным символом, который обозначает операцию инвертирования (отсюда ее название как инвертор).

    Поскольку логическое «НЕ» выполняет логическую функцию инвертирования или комплементационной, их чаще называют инверторами, поскольку они инвертируют сигнал. В логических схемах это отрицание может быть представлено нормально замкнутым переключателем.

    Представление функции «НЕ» на схеме

    Если A означает, что переключатель замкнут, то «НЕ» A или А (с верхней чертой) говорит, что переключатель НЕ замкнут или, другими словами, он разомкнут. Функция логического НЕ имеет один вход и один выход, как показано на рисунке.

    Читайте также:  Монтаж лоджии пвх видео

    Таблица истинности для функции «НЕ»

    Индикатор инверсии для логической функции «НЕ» является символом «пузыря», ( O) на выходе (или входе) символа логических элементов. В булевой алгебре инвертирующая логическая функция «НЕ» следует Закону дополнения, создающему инверсию.

    Логические «НЕ» элементы или «Инверторы», как их чаще называют, могут быть связаны со стандартными элементами «И» и» ИЛИ» для создания элементов «НЕ И» и «НЕ ИЛИ» соответственно. Инверторы также могут использоваться для генерации «дополнительных» сигналов в более сложных декодерах / логических схемах, например, дополнение логики A — это «НЕ» A , а два последовательно соединенных инвертора дают двойную инверсию, которая выдает на своем выходе исходное значение A.

    При проектировании логических схем вам может понадобиться только один или два инвертора в вашей конструкции, но если у вас нет места или денег для выделенного чипа инвертора, такого как 74LS04. Тогда вы можете легко заставить логику «НЕ» функционировать, используя любые запасные элементы «НЕ А» или «НЕ ИЛИ», просто соединяя их входы вместе, как показано ниже.

    Логическая функция «НЕ И»

    Функция «НЕ И» представляет собой комбинацию двух отдельных логических функций, функции «И» и функции «НЕ» последовательно. Логическая функция «НЕ И» может быть выражена логическим выражением AB (с верхней чертой)

    Функция логического «НЕ И» генерирует выход, только когда «ЛЮБЫЕ» из ее входов отсутствуют, и в терминах булевой алгебры выход будет ИСТИНА, только когда любой из ее входов ЛОЖЬ (0).

    Представление функции «НЕ И» на схеме

    Таблица истинности для функции «НЕ И» противоположна таблице для предыдущей функции «И», потому что элемент «НЕ И» выполняет обратную операцию элемента «И». Другими словами, элемент «НЕ И» является дополнением элемента «И».

    Таблица истинности для функции «НЕ И»

    Функция «НЕ И» обозначается вертикальной чертой или стрелкой вверх, например, логический B = A | Bили A ↑ B .

    Логика «НЕ И» используется в качестве основных «строительных блоков», чтобы построить другие функции логического элемента и доступны в стандартных IC пакетов, такие как общий TTL — 74LS00 Четырехместный 2-входной «НЕ И» элемент, TTL — 74LS10 Тройной 3-входной «НЕ И» элемент или 74LS20 Двойной 4-х входной «НЕ И» элемент. Есть даже один чип 74LS30 с 8 входами «НЕ И» элемента.

    Логическая функция «НЕ ИЛИ»

    Логический элемент «НЕ ИЛИ» представляет собой комбинацию двух отдельных логических функций, «НЕ» и «ИЛИ», соединенных вместе, чтобы сформировать единую логическую функцию, которая идентична функции «ИЛИ», за исключением того, что выход инвертирован.

    Чтобы создать вентиль «НЕ ИЛИ», функция «ИЛИ» и функция «НЕ» соединены вместе последовательно, и ее операция определяется булевым выражением как, A + B (с верхней чертой).

    Функция логического «НЕ ИЛИ» генерирует и выводит только тогда, когда отсутствуют «ВСЕ» ее входы, и в терминах булевой алгебры выход будет ИСТИНА только тогда, когда все ее входы ЛОЖНЫ .

    Представление функции «НЕ ИЛИ» на схеме

    Таблица истинности для функции «НЕ ИЛИ» противоположна таблице для предыдущей функции «ИЛИ», потому что элемент «НЕ ИЛИ» выполняет обратную операцию элемента «ИЛИ». Тогда мы можем видеть, что элемент «НЕ ИЛИ» является дополнением элемента «ИЛИ».

    Таблица истинности для функции «НЕ ИЛИ»

    Функция «НЕ ИЛИ» иногда известна как функция Пирса и обозначается стрелкой вниз, А «НЕ ИЛИ» B = A ↓ B.

    Логика элемента «НЕ ИЛИ» доступны как стандартные IC пакетов, таких как TTL 74LS02 Четырехместный 2-входной элемент «НЕ ИЛИ», TTL 74LS27 Тройной 3-входной элемент «НЕ ИЛИ» или 74LS260 Двойной 5-входной элемент «НЕ ИЛИ».

    Ссылка на основную публикацию
    Что такое двойная изоляция вводов в здание
    Монтаж ввода воздушной линии должен выполнять электрик, имеющий допуск к работе с высоким напря­жением, необходимые навыки и соответствующий ин­струмент. Иметь...
    Чертежи минитрактора из мотоблока нева своими руками
    Доброго времени суток всем ! Ну вот и закончил сборку мини трактора из МБ Нева. Решил немого приукрасить его, и...
    Чертежи подъемно поворотных гаражных ворот
    Для обеспечения продолжительной сохранности автомобиля его нужно хранить в месте, которое защитит от воздействия дождя, мороза и др. Но атмосферные...
    Что такое действующая электроустановка определение пуэ
    Электроустановка - совокупность машин, аппаратов,линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства,...
    Adblock detector