Ювелирная сварка своими руками

Ювелирная сварка своими руками

Недавно ремонтировал точечно-искровой сварочный аппарат Ding Xing Jewelry Machine и после того, как вернул его хозяину, решил собрать себе такой же. Естественно, с заменой части оригинальных комплектующих на то, что есть «в тумбочке».

Принцип работы аппарата достаточно простой – на конденсаторе C5 (рис.1) накапливается такое количество энергии, что при открывании транзистора Q9 её хватает, чтобы в месте сварки точечно расплавить металл.

С трансформатора питания Tr1 напряжение 15 В после выпрямления, фильтрации и стабилизации поступает на те части схемы, что отвечают за управление характеристиками сварочного импульса (длительность, ток) и создания высоковольтного «поджигающего» импульса. Напряжение 110 В после выпрямления заряжает конденсатор С5, который (при нажатии на педаль) разряжается в точку сварки через силовой транзистор Q8 и через вторичную обмотку трансформатора Tr2. Этот трансформатор совместно с узлом на транзисторах Q5 и Q8 создают на выводах вторичной обмотки высоковольтный импульс, пробивающий воздушный промежуток между сварочным электродом (вольфрамовой иглой, красный вывод) и свариваемыми деталями, подключенными к чёрному выводу. Это, скорее всего, необходимо для химически чистой сварки ювелирных изделий (вольфрам достаточно тугоплавкий металл).


Рис.1

Часть схемы на элементах R1, C1, D1, D2, R2, Q1, R3, Q2, K1 и D5 обеспечивает кратковременное включение реле К1 на время около 10 мс, зависящее от скорости заряда конденсатора С1 через резистор R1. Реле через контакты К1.1 подаёт стабилизированное напряжение питания +12 В на два узла. Первый, на элементах C8, Q5, R15, R16, Q8, R18, R20 и Tr2 – это уже упомянутый генератор высоковольтного «поджигающего» импульса. Второй узел на R5, C2, R6, D6, D7, R9, C4, R10, Q3, R12, Q4, R13, R14, Q6, R24, Q7, R17, R21, D8, R22, Q9 и R23 – генератор одиночного сварочного импульса, регулируемого резисторами R6 по длительности (1…5 мс) и R17 по току. На транзисторе Q3 собран, собственно, сам генератор импульса (принцип работы как и на включение реле), а транзисторы Q6 и Q7 – это составной эмиттерный повторитель, нагрузкой которого является силовой ключ на транзисторе Q9. Низкоомный резистор R23 — датчик силы сварочного тока, напряжение с него проходит через регулируемый делитель R22, R17, R14 и открывает транзистор Q4, который уменьшает напряжение открывания выходного транзистора Q9 и этим ограничивает протекающий ток. Параметры регулировки тока точно определить не удалось, но расчётный верхний предел не более 150 А (определяется внутренним сопротивлением транзистора Q9, сопротивлениями вторичной обмотки Tr2, резистора R23, монтажных проводников и мест пайки).

Полевой транзистор Q8 собран из четырёх IRF630, включенных параллельно (в оригинальной схеме стоит один IRFP460). Силовой транзистор Q9 состоит из десяти FJP13009, также включенных «параллельно» (в оригинальной схеме стоят два IGBT транзистора). Схема «запараллеливания» показана на рис.2 и кроме транзисторов содержит в себе элементы R21, D8, R22 и R23 каждые для своего транзистора (рис.3).


Рис.2


Рис.3

Низкоомные резисторы R20 и R23 выполнены их нихромовой проволоки диаметром 0,35 мм. На рис.4 и рис.5 показано изготовление и крепёж резисторов R23.


Рис.4


Рис.5

Печатные платы в формате программы Sprint-Layout развёл (рис.6 и рис.7), но заниматься их изготовлением по технологии ЛУТ не стал, а просто вырезал на фольгированном текстолите дорожки и «пятачки» (видно на рис.8). Размеры печатных плат 100х110 мм и 153х50 мм. Контактные соединения между ними выполнены короткими и толстыми проводниками.


Рис.6


Рис.7

Трансформатор питания Tr1 «сделан» из трёх разных трансформаторов, первичные обмотки которых включены параллельно, а вторичные последовательно для получения нужного выходного напряжения.

Сердечник импульсного трансформатора Tr2 набран из четырёх ферритовых сердечников строчных трансформаторов от старых «кинескопных» мониторов. Первичная обмотка намотана проводом ПЭЛ (ПЭВ) диаметром 1 мм и имеет 4 витка. Вторичная обмотка намотана проводом в ПВХ изоляции с диаметром жилы 0,4 мм. Количество витков в последнем варианте намотки – 36, т.е. коэффициент трансформации равен 9 (в оригинальной схеме применялся трансформатор с Ктр.=11). «Начало-конец» одной из обмоток надо скоммутировать так, чтобы выходной отрицательный импульс на красном выводе аппарата возникал после закрытия полевого транзистора Q8. Это можно проверить опытным путём – при правильном подключении искра «мощней».

Элементы R19, C10 являются демпфирующей антирезонансной цепочкой (снаббер), а такое включение диода D9 обеспечивает на красном выводе сварочного аппарата отрицательную полуволну высоковольтного «поджигающего» импульса и защищает транзистор Q9 от пробоя высоким напряжением.

Накопительный конденсатор С5 составлен из 30 электролитических конденсаторов разной ёмкости (от 100 до 470 мкФ, 200 В), включенных параллельно. Их общая ёмкость – около 8700 мкФ (в оригинальной схеме применены 4 конденсатора по 2200 мкФ). Чтобы ограничить зарядный ток конденсаторов, в схеме стоит резистор R8 NTC 10D-20. Для контроля тока используется стрелочный индикатор, подключенный к шунту R7.

Аппарат был собран в компьютерном корпусе размерами 370х380х130 мм. Все платы и другие элементы закреплены на куске толстой фанеры подходящего размера. Фото расположения элементов во время настройки на рис.8. В окончательном варианте с передней панели был убран шунт R7 и стрелочный индикатор тока (рис.9). Если же индикатор нужно ставить в аппарат, то сопротивление резистора R7 придётся подбирать по рабочему току используемого индикатора.

Читайте также:  Боярышник в ландшафтном дизайне фото


Рис.8


Рис.9

Сборку и настройку аппарата лучше производить последовательно и поэтапно. Сначала проверяется работа трансформатора питания Tr2 вместе с выпрямителями D3, D4, конденсаторами С3, С5, С9, стабилизатором VR1 и конденсаторами С6 и С7.

Затем собрать схему включения реле К1 и подбором ёмкости конденсатора С1 или сопротивления резистора R1 добиться устойчивого срабатывания реле на время около 10-15 мс при замыкании контактов на педали.

После этого можно собрать узел высоковольтного «поджигающего» импульса и, поднеся выводы вторичной обмотки друг к другу на расстояние долей миллиметра, проверит, проскакивает ли между ними искра во время срабатывания реле К1. Хорошо бы ещё убедиться, что её длительность лежит в пределах 0,3…0,5 мс.

Потом собрать остальную часть схемы управления (ту, что ниже R9 по рис.1), но к коллектору транзистора Q9 подключить не трансформатор Tr2, а резистор сопротивлением 5-10 Ом. Второй вывод резистора припаять к плюсовому выводу конденсатора С9. Включить схему и убедиться, что при нажатии педали на этом резисторе появляются импульсы длительностью от 1 до 5 мс. Чтобы проверить работу регулировки по току, нужно будет или собирать высоковольтную часть аппарата или, увеличив сопротивление R23 до нескольких Ом, посмотреть, меняется ли длительность и форма импульса тока, протекающего через Q9. Если меняется – это значит, что защита работает.

Возможно, что понадобится подбор номиналов резистора R9 и конденсатора C4. Дело в том, что для того, чтобы полностью «открыть» транзисторы Q9.1-Q9.10, нужен достаточно большой ток, который пропускает через себя Q7. Соответственно, уровень напряжения питания на конденсаторе С4 начинает «просаживаться», но этого времени должно хватать, чтобы провести сварку. Излишне большое увеличение ёмкости конденсатора C4 может привести к замедленному появлению питания в узле, а соответственно, к задержке по времени сварочного импульса относительно «поджигающего». Лучшим выходом из этой ситуации является уменьшение управляющего тока, т.е. замена десяти транзисторов 13007 на два-три мощных IGBT. Например, IRGPS60B120 (1200 В, 120 А) или IRG4PSC71 (600 В, 85 А). Ну, тогда есть смысл и в установке "родного" транзистора IRFP460 в узле, формирующем высоковольтный «поджигающий» импульс.

Не скажу, что аппарат оказался очень нужным в хозяйстве :-), но за прошедшие три недели было приварено всего несколько проводников и резисторов к лепесткам электролитических конденсаторов при изготовление блока питания и сделано несколько «показательных выступлений» для любознательных зрителей. Во всех случаях в качестве электрода использовалась медная оголённая миллиметровая проволока.

Недавно провёл "доработку" — вместо педали поставил кнопку на передней панели и добавил индикацию включения аппарата (обыкновенная лампочка накаливания, подключенная к обмотке с подходящим напряжением одного из трансформатора).

Андрей Гольцов, r9o-11, г. Искитим, февраль-март 2015

Ювелирная сфера связана с тонкими изделиями и драгоценными металлами. Все это усложняет процесс производства и делает работу сложной и дорогостоящей по себестоимости. Лазерная сварка ювелирных изделий оказывается очень востребованной в своей области, так как она используется для широкого спектра процедур с драгоценными металлами. Большинство изделий такого типа производятся из золота или серебра, что делает их соединение сложным. С учетом того, что предметы являются тонкими, а их металл обладает своими уникальными свойствами сваривания, которые зачастую усложняют качественную сварку, то лазер становится одним из наиболее рациональных способов соединения для этого.

Лазерная сварка ювелирных изделий

Здесь очень важным оказывается эстетическая составляющая. Если происходит ремонт сережек, колец и прочих изделий, то это требуется сделать так, чтобы не было видно следов. Таким образом, сварочный шов, какой образуется в обычных соединениях, исключен. Также невозможно создать сварочную ванну, как на обыкновенных металлических изделиях, из-за маленькой толщины. Здесь же не стоит беспокоиться о защитной среде и прочих нюансах, связанных с режимами, так как в этой методике все происходит намного проще.

Область применения

Лазерная ювелирная сварка, как можно догадаться из названия, применяется в ювелирной сфере. В основном она служит для ремонта и создания новых изделий. Периодически украшения могут ломаться из-за неаккуратного ношения, случайных ударов, падений и прочих случаев. Цепи рвутся, кулоны ломаются в месте соединения, а кольца периодически лопаются. Чтобы починить их, нужна специальная техника. Технология пайки является более простой и доступной, но она оставляет большее количество следов и требует дополнительной обработки после соединения. Также в ней нужно использовать припой, тогда как сварка дает все необходимое более качественно и надежно, после чего в металл не добавляется примесь припоя.

При производстве ювелирных изделий также требуется использование лазеров, так как с их помощью можно создать соединения, в которых практически не будут видны следы. Новые украшения будут выглядеть практически цельными, если правильно подобрать режимы. Стоит также отметить упрощенную работу с драгоценными металлами, где сложность сварки определенных металлов сводится к минимуму.

Читайте также:  Отзывы о планшетах 2018

Преимущества

Сварка ювелирных изделий лазером не зря получила широкое распространение среди остальных способов соединения металла. Этому способствовал следующий ряд преимуществ:

  • Шов соединения является практически незаметным, поэтому, изделие может создавать вид цельнолитого;
  • Работа может проводиться даже с самыми тонкими деликатными изделиями, что далеко не всегда возможно при других видов сварки;
  • Ремонт и создание новых изделий не составляет труда, если есть опыт работы;
  • Техника обладает достаточно большой величиной диапазона регулировки параметров, что позволяет без проблем подобрать нужный режим для работы;
  • Можно работать с драгоценными металлами без лишних проблем при соединении, как это происходит с другими методами сварки сложно свариваемых металлов;
  • Скорость сварки является достаточно высокой;
  • Производительность процесса существенно превышает альтернативные методы.

Недостатки

Данная методика имеет и некоторые недостатки, которые не позволяют ее применять во всех ювелирных мастерских;

  • Стоимость лазерной установки является достаточно высокой, так что не каждый мастер может позволить себе это;
  • Для работы с технологией требуется опыт, так как она обладает некоторой спецификой и здесь требуется учитывать массу нюансов;
  • Работа ведется только с металлами, тогда как другие виды материалов не подходят для этого.

Технология

Сварка ювелирных изделий из латуни в домашних условиях, а также прочих разновидностей металла при помощи лазера обладает практически одним и тем же принципом действия. Несмотря на то, какие именно установки для этого применяются, правила проведения процесса практически везде являются одинаковыми. Для этого требуется четко придерживаться технологии, что предполагает собой как подготовку, так и непосредственную температурную обработку.

Поверхность металла следует очистить от загрязнений, жировых пленок и прочих лишних вещей и налетов. Это может испортить место соединение металла, так как в этой зоне все должно быть максимально чистым. Практически все соединения делаются встык, особенно, если речь идет о ремонте. Здесь подводится одна часть детали к другой, так как спектр воздействия лазера является очень узким.

Процесс соединения может быть с использованием припоя и без него. Чаще всего заготовка держится в руках и подводится местом соединения к самому включенному лазеру.

Лазерная ювелирная сварка с припоем

Установка настраивается на нужный режим и включается. Буквально за несколько секунд воздействия на место сварки металл начинает размягчаться и плавиться. Если используется припой, то сначала расплавляется он и обволакивает место соединения.

Чем тоньше деталь, тем меньшее количество времени воздействия требуется для нее, чтобы сварить.»

В самом начале шов может сделаться грубым и место соединение будет заметно. Исправить положение можно при помощи того же лазера, так как сразу же после соединения можно разгладить места соединения, чтобы металл превратился в ровную поверхность.

Последующая обработка требуется не так уж часто. Специалисты, которые обладают достаточным опытом, могут ремонтировать ювелирные украшения, не требующие последующей доработки. В ином случае, нужно снять небольшой слой при помощи наждачной бумаги, благодаря чему изделие получит такой же вид, как новое украшение.

Техника безопасности

Во время работы лазер не следует направлять на те предметы, которые могут загореться. Также не стоит помещать руки в то место, где проходит луч, так что действовать нужно очень аккуратно, чтобы не возникло травматических ситуаций.

В этой статье я подробно расскажу Вам, как сделать аппарат для точечной сварки своими руками из старой микроволновой печи. Изготовленная точечная сварка способна выдавать ток до 800 Ампер, чего вполне достаточно для сварки тонкого (1 — 1.5 мм) листового металла (например, перепаковки аккумуляторных батарей и т.д).

Прежде всего нам понадобится старая микроволновка. Чем больше, тем лучше (в больших микроволновках установлен трансформатор большей мощности).

Старые микроволновки часто отдают за символическую плату на бесплатных досках объявлений, либо же можно поискать их возле мусорных контейнеров. Из внутренностей микроволновки нас в первую очередь интересует вот эта деталь (высоковольтный трансформатор):

Внутри микроволновой печи есть несколько компонентов, которые представляют опасность даже в выключенном состоянии и могут нанести серьезный удар током.

Трансформатор состоит из сердечника и двух обмоток: первичной и вторичной. Первичная обмотка намотана более толстым проводом и содержит гораздо меньше витков.

Сердечник трансформатора скрепляется с помощью двух тонких сварных швов, как видно на фото.

Вам понадобятся ножовка или болгарка для того чтобы разрезать этот шов, а также молоток и долото чтобы добраться до обмоток трансформатора.

Будьте аккуратны, извлекая первичную обмотку из трансформатора, так как она нам еще понадобится. Постарайтесь не гнуть и не царапать её.

Примечание: Вторичная обмотка может быть намотана очень плотно и ее сложно извлечь, поэтому если она Вам не нужна, то можно разрезать и вытащить по кускам, так будет намного легче.

Теперь, после всех манипуляций, у Вас на руках должны быть — целая и неповрежденная первичная обмотка трансформатора и его сердечник, разделенный на две части (без клея и бумаги, которые удерживали его обмотки внутри).

Читайте также:  Смесители для ванной и кухни цены

Следующим шагом будет намотка вторичной обмотки трансформатора. Для этого нужно взять медный (обязательно!) кабель приблизительно такого же сечения как и прорези в сердечнике трансформатора (около 7 мм) и намотать два витка.

Затем я скрепил сердечник трансформатора с его основанием, используя обычную 2-х компонентную эпоксидную смолу и аккуратно прижав в тисках, оставил склеиваться.

После того как эпоксидка высохнет, трансформатор должен выглядеть примерно так.

Напряжение на выходе трансформатора получилось чуть более 2-х вольт, но сила тока — более 800 Ампер. Это достаточный ток для того чтобы обеспечить прочное соединение при сварке металлов.

Теперь осталось сделать корпус для аппарата точечной сварки. Я сделал его из дерева. Я умышленно не даю точные размеры, т.к. все равно Вы будете делать его исходя из того, что у Вас будет под рукой.

Ниже на фото показан процесс изготовления корпуса.

После того как я вырезал все части корпуса, я тщательно закруглил их края с помощью фрезы. На верхнем рычаге Вам нужно будет сделать вот такую выемку. Это нужно для того, чтобы рычаг мог легко подниматься вверх не упираясь в корпус.

На задней панели я вырезал два отверстия, одно под выключатель, второе под провод питания.

Затем я отшлифовал, загрунтовал и окрасил все детали. Я выбрал два цвета — черный для корпуса, и желтый для движущихся частей (рычагов).

Также при изготовлении точечной сварки своими руками я использовал:

  • Шнур питания;
  • Ручка от двери;
  • Выключатель;
  • Медные держатели под контактные электроды (2 шт) (их можно купить в магазинах, торгующих сварочным оборудованием);
  • Толстый одножильный медный провод для изготовления контактных электродов (около 5 мм);
  • Саморезы по дереву, гвозди;

После того как окрашенный корпус высох (я дал ему около 2-х дней), приступаем к окончательной сборке устройства.

Отрежьте два куска медного провода, длиной около 2.5 см каждый — это будут будущие электроды и зажмите их в держателях. Электроды в держателях затягиваются с помощью обычной отвертки. Чем плотнее — тем лучше.

Затем я закрепил на задней панели выключатель и вставил кабель питания в отверстие. Утолщение на кабеле предотвращает его от выпадания.

Я закрепил трансформатор на деревянной основе с помощью обычных саморезов. На один из них я одел клемму, которую присоединил к заземлению.

Электрическую часть на этом можно было бы считать завершенной, но для большей безопасности и удобства, я решил добавить еще одну кнопку (микрик), который будет располагаться на верхнем рычаге под небольшим углом. Таким образом точечная сварка будет работать только тогда, когда выключатель на задней панели включен, и нажат микрик (иными словами два выключателя установлены последовательно).

Примечание: Не забывайте тщательно изолировать все соединения!

Боковые стороны я прикрутил на саморезы (6 шт. на каждую сторону).

Рычаги я закрепил следующим образом — опытным путем (на глаз) установил их один на другой, в боковых стенках просверлил два отверстия (для нижнего и верхнего рычага) и в отверстие вставил обычный гвоздь, конец которого я затем загнул. Получилась дешевая и надежная ось.

Контактные электроды я установил на торцах рычагов. Для удобства верхний провод идет в одну сторону, нижний в другую (смотрите фото).

Для того чтобы верхний рычаг всегда был поднят, я использовал обычную резинку.

Если после сборки, оси электродов неточно становятся друг на друга — это легко исправить, немного их согнув.

Когда я закончил сборку, мой автомат для точечной сварки своими руками выглядел следующим образом:

Для использования, поместите тонкие листы металла между электродами, затем нажмите на кнопку (микрик) в течении 3-4 секунд. Мощный импульс электрического тока нагревает их до температуры плавления, а давления электродов еще больше укрепляет сварное соединение. Теперь Вы можете убрать свой палец с кнопки, и подождать пока сварной шов не остынет.

Аппарат для точечной сварки своими руками работает настолько хорошо, что сварив эти шайбы друг с другом, я не мог их разъединить (мне удалось это сделать, только используя 2 пары плоскогубцев).

Вот что будет, если прикоснутся электродами без свариваемых деталей.

П.С. Не рекомендую так делать.

Примечание: При сварке оцинкованных металлов образуются пары оксида цинка, который вреден. Поэтому желательно проводить сварочные работы в хорошо проветриваемом помещении.

После того, как контактные электроды выгорят, их легко снять и заменить на новые.

Вот видео, на котором показан процесс изготовления аппарата для точечной сварки своими руками:

Пользователь Вова прислал нам свое видео об изготовлении точечной сварки:

Ссылка на основную публикацию
Этажерка в спальню фото
Как известно, мир развивается по спирали, и вот вновь настала эпоха ренессанса для этажерок. В тяжелые послевоенные годы одним из...
Электромагнитный замок на распашные ворота
Купить замок для распашных ворот Locinox – значит выбрать превосходное качество продукции, быструю и легкую установку, надежность, эстетичный вид и...
Электромагнитный замок с герконом
На сайте продавца доступен "Онлайн консультант".Для перехода на сайт нажмите "В магазин" На сайте продавца доступен бесплатный номер 8-800.Для перехода...
Этажерка из металла своими руками
Этажерка своими руками – это не только просто, но и экономично. Если вам раньше не доводилось мастерить что-то своими руками,...
Adblock detector